Structural
 Science

ISSN 0108-7681

Vasyl Sidey

Department of Chemistry and Research Institute for Physics and Chemistry of Solids, Uzhgorod National University, Pidgirna Street 46 Uzhgorod 88000, Ukraine

Correspondence e-mail: vasylsidey@yahoo.com

Received 28 March 2012
Accepted 5 May 2012
(C) 2012 International Union of Crystallography Printed in Singapore - all rights reserved

Exact solution of the bond-valence sum rule for a set of coordination shells

The calculation scheme for determining the bond-valence parameters (r_{0} and b) resulting in the exact solution of the bond-valence sum rule for a given set of coordination shells is presented.

The bond-valence model (BVM) is widely used in mineralogy and structural inorganic chemistry as a powerful and convenient tool for validating newly determined crystal structures and for predicting bond lengths in structures of known chemical composition and presupposed bond-network topology (Brown, 2002, 2009). Bond valence (BV) s is defined as part of the 'classical' atomic valence shared with each bond. According to the bond-valence sum (BVS) rule, the oxidation state (atomic valence) V_{A} of the central ion (atom) of the $\left[A X_{n}\right]$ coordination shell can be calculated from the sum of the individual bond valences $s_{A X}$, as given by

$$
\begin{equation*}
V_{A}=\mathrm{BVS}=\sum_{n} s_{A X} . \tag{1}
\end{equation*}
$$

The valence of a bond (measured in 'valence units', v.u.) is considered to be a unique function of the bond length; the most commonly adopted empirical expression for the relationship between the bond valences $s_{A X}$ and the bond lengths $r_{A X}$ is equation (2), where r_{0} and b are the empirically determined parameters (BV parameters) for a given ion (atom) pair, r_{0} being the length of the conceptual bond of unit valence with $s_{A X}=1$.

$$
\begin{equation*}
s_{A X}=\exp \left[\left(r_{0}-r_{A X}\right) / b\right] \tag{2}
\end{equation*}
$$

The b parameter in (2) is commonly taken to be the 'universal constant' equal to 0.37 A ; and the r_{0} parameters have been determined (directly calculated or obtained by extrapolation) for a large number (~ 1000) of ion pairs, assuming $b=0.37 \AA$ (Brown \& Altermatt, 1985; Brese \& O'Keeffe, 1991). In most cases, the use of the above 'universal constant' is fairly justified; but for certain ion pairs (especially for those having a wide range of coordination numbers) close approximations of the real ' $s_{A X}$ versus $r_{A X}$ ' correlations are possible only by simultaneous fitting of both r_{0} and b (e.g. Krivovichev \& Brown, 2001; Locock \& Burns, 2004; Sidey, 2010).
The standard scheme for direct calculation of the BV parameters (Brese \& O'Keeffe, 1991; Brown, 2002) includes:
(i) selecting the most reliable dataset of $A-X$ bond lengths for a given ion pair;
(ii) solving (1) for the i th coordination shell $\left[A X_{n}\right]$ by using (3), where b is usually preset to $0.37 \AA$;
(iii) averaging the $r_{0}^{(i)}$ values calculated for a given ion pair.

$$
\begin{equation*}
r_{0}^{(i)}=b \ln \left[V_{A} / \sum_{n} \exp \left(-r_{A X}^{(i)} / b\right)\right] \tag{3}
\end{equation*}
$$

Intuitively, the 'standard' r_{0} value (hereafter denoted as ${ }^{\text {st }} r_{0}$) obtained in the above scheme by averaging the individual $r_{0}^{(i)}$ values is expected to give the average bond-valence sum $\langle\mathrm{BVS}\rangle=V_{A}$ for the set of coordination shells considered; but rigorous mathematical examination of this scheme indicates that, in the general case, the ${ }^{\text {st }} r_{0}$ value gives $\langle\mathrm{BVS}\rangle \neq V_{A}$. Although at the adequately preset b value the systematic error introduced by the standard scheme is expected to be relatively small (see below), a scheme resulting in the exact (i.e.

Table 1
Comparison of the ${ }^{\text {st }} r_{0}$ and ${ }^{\mathrm{ex}} r_{0}$ values calculated for the set of two coordination shells, $\left[\mathrm{BO}_{3}\right]$ of $\mathrm{B}_{2} \mathrm{O}_{3}-(\mathrm{I})$ (Effenberger et al., 2001) and $\left[\mathrm{BO}_{4}\right]$ of $\mathrm{B}_{2} \mathrm{O}_{3}$-(II) (Prewitt \& Shannon, 1968).

$b(\AA)$	$r_{0}^{(\mathrm{I})}(\AA)$	$r_{0}^{\text {(II) }}(\AA)$	${ }^{\text {st }} r_{0}(\AA)$	st $\langle\mathrm{BVS}\rangle$ $(\mathrm{v} . \mathrm{u}.) \dagger$	${ }^{\mathrm{ex}} r_{0}(\AA)$	${ }^{\mathrm{ex}}\langle\mathrm{BVS}\rangle$ $(\mathrm{v} . \mathrm{u}.) \dagger$
0.10	1.36763	1.42546	1.39654	3.1263	1.39242	3.0000
0.20	1.36782	1.40747	1.38764	3.0148	1.38666	3.0000
0.30	1.36788	1.38205	1.37496	3.0008	1.37488	3.0000
$0.3526 \mp$	1.3678964	1.3678860	1.3678912	3.000000	$1.3678912 \ddagger$	3.000000
0.40	1.36791	1.35489	1.36140	3.0004	1.36135	3.0000
0.50	1.36793	1.32707	1.34750	3.0025	1.34708	3.0000
0.60	1.36794	1.29892	1.33343	3.0050	1.33244	3.0000
0.70	1.36795	1.27059	1.31927	3.0073	1.31758	3.0000
0.80	1.36795	1.24215	1.30505	3.0093	1.30258	3.0000
0.90	1.36796	1.21363	1.29079	3.0110	1.28749	3.0000

\dagger The average BVS values calculated for the set of considered coordination shells by using the ${ }^{\text {st }} r_{0}$ and ${ }^{\text {ex }} r_{0}$ values, respectively. \ddagger The optimum BV parameters for the set of coordination shells considered.
mathematically correct) solution of the BVS rule for a given set of coordination shells could be useful for analytically (Sidey, 2010) determining the high-performance BV parameters from the 'reference structure/shell sets' - to avoid accumulating the systematic errors in the final results. Thus, the main goal of this work is to present the calculation scheme developed by the author and resulting in the exact solution ${ }^{\text {ex }} r_{0}$ of the BVS rule for a given set of coordination shells and for a given preset b value.

Equation (3) gives the exact solution of (1) and (2) for the i th coordination shell $\left[A X_{n}\right]$ and for a given preset b value; this equation can be easily derived by combining (1) and (2). Thus, for the i th shell [$A X_{n}$], (1) can be rewritten as (4). Then, the required equation (3) can be obtained from the sequence of simple mathematical transformations (4) \rightarrow (5) \rightarrow (6) \rightarrow (3).

$$
\begin{gather*}
V_{A}=\exp \left(r_{0}^{(i)} / b\right) \times \sum_{n} \exp \left(-r_{A X}^{(i)} / b\right) \tag{4}\\
\exp \left(r_{0}^{(i)} / b\right)=V_{A} / \sum_{n} \exp \left(-r_{A X}^{(i)} / b\right) \tag{5}\\
r_{0}^{(i)} / b=\ln \left[V_{A} / \sum_{n} \exp \left(-r_{A X}^{(i)} / b\right)\right] \tag{6}
\end{gather*}
$$

To simplify the presentation of the mathematical formulae, hereafter the term ' $\sum_{n} \exp \left(-r_{A X}^{(i)} / b\right)$ ' calculated for the i th coordination shell $\left[A X_{n}\right]$ will be denoted as ' $\sum^{(i)}$; so equation (3) for the i th shell can be presented as

$$
\begin{equation*}
r_{0}^{(i)}=b \ln \left[V_{A} / \sum^{(i)}\right] \tag{7}
\end{equation*}
$$

For a given set of N coordination shells $\left[A X_{n}\right]$ and for a given preset b value, the exact solution ${ }^{\mathrm{ex}} r_{0}$ of the BVS rule can be obtained by solving equation (8)

$$
\begin{equation*}
N V_{A}=N\langle\mathrm{BVS}\rangle=\sum_{n} s_{A X}^{(1)}+\sum_{n} s_{A X}^{(2)}+\ldots+\sum_{n} s_{A X}^{(N)} . \tag{8}
\end{equation*}
$$

Equation (9) can be directly obtained from (2) and (8).

$$
\begin{equation*}
N V_{A}=\exp \left({ }^{\mathrm{ex}} r_{0} / b\right) \times\left[\sum^{(1)}+\sum^{(2)}+\ldots+\sum^{(N)}\right] \tag{9}
\end{equation*}
$$

Then, through the sequence of simple transformations analogous to those mentioned above one can easily derive the main working formula to calculate the ${ }^{e x} r_{0}$ value, equation (10). ${ }^{1}$

[^0]\[

$$
\begin{equation*}
{ }^{\mathrm{ex}} r_{0}=b \ln \left\{N V_{A} /\left[\sum^{(1)}+\sum^{(2)}+\ldots+\sum^{(N)}\right]\right\} \tag{10}
\end{equation*}
$$

\]

Since the term ' $\left[\sum^{(1)}+\sum^{(2)}+\ldots+\sum^{(N)}\right] / N$ ' is the arithmetic mean of the $\sum^{(i)}$ values, ${ }^{\text {am }} \sum^{(i)}$, equation (10) can be rewritten as

$$
\begin{equation*}
{ }^{\mathrm{ex}} r_{0}=b \ln \left[V_{A} /{ }^{\mathrm{am}} \sum^{(i)}\right] \tag{11}
\end{equation*}
$$

The aforementioned 'standard' value ${ }^{\text {st }} r_{0}$ obtained in the commonly used scheme is actually calculated by

$$
\begin{equation*}
{ }^{\mathrm{st}} r_{0}=\left\langle r_{0}^{(i)}\right\rangle=\left\langle b \ln \left(V_{A} / \sum^{(i)}\right)\right\rangle \tag{12}
\end{equation*}
$$

Taking into account the fact that the b and V_{A} values are constants, and using elementary mathematics, (12) can be easily rewritten as (13), where ${ }^{\mathrm{gm}} \sum^{(i)}$ is the geometric mean of the $\sum^{(i)}$ values.

$$
\begin{equation*}
{ }^{\mathrm{st}} r_{0}=b \ln \left[V_{A} /{ }^{\mathrm{gm}} \sum^{(i)}\right] \tag{13}
\end{equation*}
$$

Comparison of equations (11) and (13) leads to the conclusion that ${ }^{\text {st }} r_{0} \geq{ }^{\text {ex }} r_{0}$, since ${ }^{\text {gm }} \sum^{(i)} \leq{ }^{\text {am }} \sum^{(i)}$. The ${ }^{\text {st }} r_{0}$ and ${ }^{\text {ex }} r_{0}$ values can be equal only in the exceptional case where the $\sum^{(i)}$ values are all equal and produce the arithmetic and geometric means equal to each other. In all other cases, ${ }^{\text {st }} r_{0}$ is larger than ${ }^{\text {ex }} r_{0}$ and, therefore, ${ }^{2}$ gives $\langle\mathrm{BVS}\rangle>V_{A}$. The error $\Delta r_{0}=\left|{ }^{\text {st }} r_{0}-{ }^{\mathrm{ex}} r_{0}\right|$ introduced by the standard scheme can be calculated from (14).

$$
\begin{equation*}
\Delta r_{0}=b \ln \left[{ }^{[\mathrm{am}} \sum^{(i)} /{ }^{\mathrm{gm}} \sum^{(i)}\right] \tag{14}
\end{equation*}
$$

It must be noted, however, that a significant difference between the ${ }^{\text {st }} r_{0}$ and ${ }^{\text {ex }} r_{0}$ values (i.e. Δr_{0}) is only expected if the $\sum^{(i)}$ values demonstrate rather large spread: in this case, the geometric mean ${ }^{\mathrm{gm}} \sum^{(i)}$ is significantly smaller than the arithmetic mean ${ }^{\mathrm{am}} \sum^{(i)}$.

Serious divergence of the arithmetic and geometric means at large spread of the considered values can be easily concluded, e.g. from the Latané approximation of the geometric mean (Latané, 1959; Young \& Trent, 1969). According to Latané, the arithmetic mean A, the geometric mean G, and the standard uncertainty σ (the measure of spread) for a given set of values are related as in (15).

$$
\begin{equation*}
G^{2} \simeq A^{2}-\sigma^{2} \tag{15}
\end{equation*}
$$

It is clear from (15) that if the spread (σ) of the considered values increases, then the G value becomes smaller; conversely, a small spread of the values results in a small difference between the arithmetic and geometric means (in this case, $G \simeq A$).

On the other hand, a small spread of the $\sum^{(i)}$ [and, therefore, $r_{0}^{(i)}$] values is possible only if the preset b value is close to the correct b value for a given ion pair (Sidey, 2008). Hence, comparison of the ${ }^{\text {st }} r_{0}$ and ${ }^{\text {ex }} r_{0}$ values can be potentially helpful in selecting the optimum b values.

In order to illustrate the difference between the ${ }^{\text {st }} r_{0}$ and ${ }^{\mathrm{ex}} r_{0}$ values, and to outline the possible uses of the calculation scheme presented here, the small set of two coordination shells, $\left[\mathrm{BO}_{3}\right]$ of $\mathrm{B}_{2} \mathrm{O}_{3}-(\mathrm{I})$ (Effenberger et al., 2001) and $\left[\mathrm{BO}_{4}\right]$ of $\mathrm{B}_{2} \mathrm{O}_{3}$-(II) (Prewitt \& Shannon, 1968), has been considered. For different preset b values ($0.1-0.9 \AA$) the ${ }^{\text {st }} r_{0}$ and ${ }^{\text {ex }} r_{0}$ values have been calculated and then used for calculations of the average ${ }^{\text {st }}\langle\mathrm{BVS}\rangle$ and ${ }^{\text {ex }}\langle\mathrm{BVS}\rangle$ values, respectively. The $r_{0}^{(\mathrm{I})}$ and $r_{0}^{(\mathrm{II})}$ values used to calculate the ${ }^{\text {st }} r_{0}$ values were respectively obtained from the $\mathrm{B}_{2} \mathrm{O}_{3}$-(I) and $\mathrm{B}_{2} \mathrm{O}_{3}$-(II) structures. The results obtained are collected in Table 1. All calculations have been performed by means of a simple ad hoc program written in BASIC; all the numeric parameters have been taken with double precision. The bond lengths used in the calculations have been taken with the

[^1]
short communications

precision of $0.001 \AA$; the superfluous precision of the values in Table 1 is used exclusively for illustrative purposes.

As seen from Table 1, the calculation scheme presented here steadily results in ${ }^{\mathrm{ex}}\langle\mathrm{BVS}\rangle=V_{A}$, whereas the results of the standard scheme clearly demonstrate the dependence of the ${ }^{\text {st }}\langle\mathrm{BVS}\rangle$ value on the preset b value. However, within the limits of the b value from ~ 0.3 to $\sim 0.4 \AA$, the difference between the ${ }^{\text {st }}\langle\mathrm{BVS}\rangle$ and ${ }^{\text {ex }}\langle\mathrm{BVS}\rangle$ values does not exceed 0.001 v.u. and virtually vanishes at the BV parameters ${ }^{3} r_{0}=1.3678912 \AA$ and $b=0.3526 \AA$.
Table 1 clearly suggests two obvious uses of the calculation scheme presented here. First, as mentioned above, this scheme could be useful for analytically (Sidey, 2010) determining the BV parameters from the 'reference structure/shell sets' for which the BVS rule is expected to be obeyed exactly (i.e. $\langle\mathrm{BVS}\rangle=V_{A}$). Thus, exploring the ' r_{0} versus b ' dependencies accurately calculated for the above sets by using this scheme [every point of such dependencies exactly gives $\langle\mathrm{BVS}\rangle=V_{A}$ for the respective set] can help find the common or optimum solution $\left(r_{0} ; b\right)$ of the highest possible accuracy.

Additionally, if the correct b value for a given ion pair is hard to detect [e.g. if the ion pair demonstrates only one coordination number], this parameter might be detected by comparison of the ${ }^{\text {st }} r_{0}$ and ${ }^{\text {ex }} r_{0}$ (or ${ }^{\text {st }}\langle\mathrm{BVS}\rangle$ and V_{A}) values calculated for a statistically representative set of coordination shells; the best possible value of the b parameter must give the smallest difference $\left.\right|^{\text {st }} r_{0}-{ }^{\text {ex }} r_{0} \mid$ (or $\left.\left.\right|^{\text {st }}\langle\mathrm{BVS}\rangle-V_{A} \mid\right)$.
However, a researcher should always bear in mind that even in very favourable cases the precision of the BV parameters is not expected to be better than $0.001 \AA$ for b and $0.0001 \AA$ for r_{0}.

Finally, it must be clearly stated that the calculation scheme presented here is just a supplemental tool for determining the highperformance BV parameters; as with any other related scheme, this cannot replace crystal chemical knowledge of a researcher and, therefore, should be used cautiously. Nevertheless, the author believes that the above scheme can be useful for the BVM and should be considered by a researcher if other calculation schemes supposedly fail.

References

Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. IUCr Monograph on Crystallography 12. Oxford University Press.
Brown, I. D. (2009). Chem. Rev. 109, 6858-6919.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Effenberger, H., Lengauer, C. L. \& Parthé, E. (2001). Monatsh. Chem. 132, 1515-1517.
Krivovichev, S. V. \& Brown, I. D. (2001). Z. Kristallogr. 216, 245-247.
Latané, H. A. (1959). J. Polit. Econ. 67, 144-155.
Locock, A. J. \& Burns, P. C. (2004). Z. Kristallogr. 219, 259-266.
Prewitt, C. T. \& Shannon, R. D. (1968). Acta Cryst. B24, 869-874.
Sidey, V. (2008). Acta Cryst. B64, 515-518.
Sidey, V. (2010). Acta Cryst. B66, 307-314.
Young, W. E. \& Trent, R. H. (1969). J. Finan. Quant. Anal. 4, 179199.

[^2]
[^0]: ${ }^{\mathbf{1}}$ For the first time, this formula has been used by Sidey (2010), but its mathematical essence has never been discussed.

[^1]: ${ }^{\mathbf{2}}$ For any positive b value, an increase in the r_{0} parameter in equation (2) results in higher $s_{A X}$ (and BVS) values.

[^2]: ${ }^{3}$ Being derived from the crystalline $\mathrm{B}_{2} \mathrm{O}_{3}$ polymorphs, these BV parameters (taken with more realistic precision) can be considered as those corresponding to 'pure' $\mathrm{B}-\mathrm{O}$ bonds not influenced by the 'third-party' atoms; applicability of these parameters will be discussed elsewhere.

