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The calculation scheme for determining the bond-valence parameters (r0 and b)

resulting in the exact solution of the bond-valence sum rule for a given set of

coordination shells is presented.

The bond-valence model (BVM) is widely used in mineralogy and

structural inorganic chemistry as a powerful and convenient tool for

validating newly determined crystal structures and for predicting

bond lengths in structures of known chemical composition and

presupposed bond-network topology (Brown, 2002, 2009). Bond

valence (BV) s is defined as part of the ‘classical’ atomic valence

shared with each bond. According to the bond-valence sum (BVS)

rule, the oxidation state (atomic valence) VA of the central ion (atom)

of the [AXn] coordination shell can be calculated from the sum of the

individual bond valences sAX, as given by

VA ¼ BVS ¼
P

n sAX : ð1Þ

The valence of a bond (measured in ‘valence units’, v.u.) is

considered to be a unique function of the bond length; the most

commonly adopted empirical expression for the relationship between

the bond valences sAX and the bond lengths rAX is equation (2), where

r0 and b are the empirically determined parameters (BV parameters)

for a given ion (atom) pair, r0 being the length of the conceptual bond

of unit valence with sAX = 1.

sAX ¼ exp½ðr0 � rAX Þ=b� ð2Þ

The b parameter in (2) is commonly taken to be the ‘universal

constant’ equal to 0.37 Å; and the r0 parameters have been deter-

mined (directly calculated or obtained by extrapolation) for a large

number (� 1000) of ion pairs, assuming b = 0.37 Å (Brown &

Altermatt, 1985; Brese & O’Keeffe, 1991). In most cases, the use of

the above ‘universal constant’ is fairly justified; but for certain ion

pairs (especially for those having a wide range of coordination

numbers) close approximations of the real ‘sAX versus rAX’ correla-

tions are possible only by simultaneous fitting of both r0 and b (e.g.

Krivovichev & Brown, 2001; Locock & Burns, 2004; Sidey, 2010).

The standard scheme for direct calculation of the BV parameters

(Brese & O’Keeffe, 1991; Brown, 2002) includes:

(i) selecting the most reliable dataset of A—X bond lengths for a

given ion pair;

(ii) solving (1) for the ith coordination shell [AXn] by using (3),

where b is usually preset to 0.37 Å;

(iii) averaging the r0
(i) values calculated for a given ion pair.

r
ðiÞ
0 ¼ b ln VA=

P
n expð�r

ðiÞ
AX=bÞ

h i
ð3Þ

Intuitively, the ‘standard’ r0 value (hereafter denoted as str0)

obtained in the above scheme by averaging the individual r
ðiÞ
0 values is

expected to give the average bond-valence sum hBVSi = VA for the

set of coordination shells considered; but rigorous mathematical

examination of this scheme indicates that, in the general case, the str0

value gives hBVSi 6¼ VA. Although at the adequately preset b value

the systematic error introduced by the standard scheme is expected to

be relatively small (see below), a scheme resulting in the exact (i.e.
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mathematically correct) solution of the BVS rule for a given set of

coordination shells could be useful for analytically (Sidey, 2010)

determining the high-performance BV parameters from the ‘refer-

ence structure/shell sets’ – to avoid accumulating the systematic

errors in the final results. Thus, the main goal of this work is to present

the calculation scheme developed by the author and resulting in the

exact solution exr0 of the BVS rule for a given set of coordination

shells and for a given preset b value.

Equation (3) gives the exact solution of (1) and (2) for the ith

coordination shell [AXn] and for a given preset b value; this equation

can be easily derived by combining (1) and (2). Thus, for the ith shell

[AXn], (1) can be rewritten as (4). Then, the required equation (3) can

be obtained from the sequence of simple mathematical transforma-

tions (4)! (5)! (6)! (3).

VA ¼ exp r
ðiÞ
0 =b

� �
�
P

n exp �r
ðiÞ
AX=b

� �
ð4Þ

exp r
ðiÞ
0 =b

� �
¼ VA=

P
n exp �r

ðiÞ
AX=b

� �
ð5Þ

r
ðiÞ
0 =b ¼ ln VA=

P
n expð�r

ðiÞ
AX=bÞ

h i
ð6Þ

To simplify the presentation of the mathematical formulae, here-

after the term ‘
P

nexp(�r
ðiÞ
AX /b)’ calculated for the ith coordination

shell [AXn] will be denoted as ‘
P

(i)’; so equation (3) for the ith shell

can be presented as

r
ðiÞ
0 ¼ b ln VA=

PðiÞh i
: ð7Þ

For a given set of N coordination shells [AXn] and for a given

preset b value, the exact solution exr0 of the BVS rule can be obtained

by solving equation (8)

NVA ¼ NhBVSi ¼
P

n s
ð1Þ
AX þ

P
n s
ð2Þ
AX þ :::þ

P
n s
ðNÞ
AX : ð8Þ

Equation (9) can be directly obtained from (2) and (8).

NVA ¼ expðexr0=bÞ �
Pð1Þ
þ
Pð2Þ
þ:::þ

PðNÞh i
ð9Þ

Then, through the sequence of simple transformations analogous to

those mentioned above one can easily derive the main working

formula to calculate the exr0 value, equation (10).1

exr0 ¼ b lnfNVA=½
Pð1Þ
þ
Pð2Þ
þ:::þ

PðNÞ
�g ð10Þ

Since the term ‘[
P

(1) +
P

(2) + . . . +
P

(N)]/N’ is the arithmetic

mean of the
P

(i) values, am
P

(i), equation (10) can be rewritten as

exr0 ¼ b ln½VA=
am
PðiÞ
�: ð11Þ

The aforementioned ‘standard’ value str0 obtained in the commonly

used scheme is actually calculated by

str0 ¼ hr
ðiÞ
0 i ¼ hb lnðVA=

PðiÞ
Þi: ð12Þ

Taking into account the fact that the b and VA values are constants,

and using elementary mathematics, (12) can be easily rewritten as

(13), where gm
P

(i) is the geometric mean of the
P

(i) values.

str0 ¼ b ln½VA=
gm
PðiÞ
� ð13Þ

Comparison of equations (11) and (13) leads to the conclusion that
str0 �

exr0, since gm
P

(i)
�

am
P

(i). The str0 and exr0 values can be equal

only in the exceptional case where the
P

(i) values are all equal and

produce the arithmetic and geometric means equal to each other. In

all other cases, str0 is larger than exr0 and, therefore,2 gives

hBVSi > VA. The error �r0 = |str0 �
exr0| introduced by the standard

scheme can be calculated from (14).

�r0 ¼ b ln½amPðiÞ =gm
PðiÞ
� ð14Þ

It must be noted, however, that a significant difference between the
str0 and exr0 values (i.e. �r0) is only expected if the

P
(i) values

demonstrate rather large spread: in this case, the geometric mean
gm
P

(i) is significantly smaller than the arithmetic mean am
P

(i).

Serious divergence of the arithmetic and geometric means at large

spread of the considered values can be easily concluded, e.g. from the

Latané approximation of the geometric mean (Latané, 1959; Young

& Trent, 1969). According to Latané, the arithmetic mean A, the

geometric mean G, and the standard uncertainty � (the measure of

spread) for a given set of values are related as in (15).

G2
’ A2

� �2 ð15Þ

It is clear from (15) that if the spread (�) of the considered values

increases, then the G value becomes smaller; conversely, a small

spread of the values results in a small difference between the arith-

metic and geometric means (in this case, G ’ A).

On the other hand, a small spread of the
P

(i) [and, therefore, r
ðiÞ
0 ]

values is possible only if the preset b value is close to the correct b

value for a given ion pair (Sidey, 2008). Hence, comparison of the str0

and exr0 values can be potentially helpful in selecting the optimum b

values.

In order to illustrate the difference between the str0 and exr0 values,

and to outline the possible uses of the calculation scheme presented

here, the small set of two coordination shells, [BO3] of B2O3-(I)

(Effenberger et al., 2001) and [BO4] of B2O3-(II) (Prewitt & Shannon,

1968), has been considered. For different preset b values (0.1–0.9 Å)

the str0 and exr0 values have been calculated and then used for

calculations of the average st
hBVSi and ex

hBVSi values, respectively.

The r0
(I) and r0

(II) values used to calculate the str0 values were

respectively obtained from the B2O3-(I) and B2O3-(II) structures. The

results obtained are collected in Table 1. All calculations have been

performed by means of a simple ad hoc program written in BASIC;

all the numeric parameters have been taken with double precision.

The bond lengths used in the calculations have been taken with the
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Table 1
Comparison of the str0 and exr0 values calculated for the set of two coordination
shells, [BO3] of B2O3-(I) (Effenberger et al., 2001) and [BO4] of B2O3-(II) (Prewitt
& Shannon, 1968).

b (Å) r
ðIÞ
0 (Å) r

ðIIÞ
0 (Å) str0 (Å)

st
hBVSi

(v.u.)† exr0 (Å)

ex
hBVSi

(v.u.)†

0.10 1.36763 1.42546 1.39654 3.1263 1.39242 3.0000
0.20 1.36782 1.40747 1.38764 3.0148 1.38666 3.0000
0.30 1.36788 1.38205 1.37496 3.0008 1.37488 3.0000
0.3526‡ 1.3678964 1.3678860 1.3678912 3.000000 1.3678912‡ 3.000000
0.40 1.36791 1.35489 1.36140 3.0004 1.36135 3.0000
0.50 1.36793 1.32707 1.34750 3.0025 1.34708 3.0000
0.60 1.36794 1.29892 1.33343 3.0050 1.33244 3.0000
0.70 1.36795 1.27059 1.31927 3.0073 1.31758 3.0000
0.80 1.36795 1.24215 1.30505 3.0093 1.30258 3.0000
0.90 1.36796 1.21363 1.29079 3.0110 1.28749 3.0000

† The average BVS values calculated for the set of considered coordination shells by using the
str0 and exr0 values, respectively. ‡ The optimum BV parameters for the set of coordination

shells considered.

1 For the first time, this formula has been used by Sidey (2010), but its
mathematical essence has never been discussed.

2 For any positive b value, an increase in the r0 parameter in equation (2)
results in higher sAX (and BVS) values.



precision of 0.001 Å; the superfluous precision of the values in Table 1

is used exclusively for illustrative purposes.

As seen from Table 1, the calculation scheme presented here

steadily results in ex
hBVSi = VA, whereas the results of the standard

scheme clearly demonstrate the dependence of the st
hBVSi value on

the preset b value. However, within the limits of the b value from

� 0.3 to � 0.4 Å, the difference between the st
hBVSi and ex

hBVSi

values does not exceed 0.001 v.u. and virtually vanishes at the BV

parameters3 r0 = 1.3678912 Å and b = 0.3526 Å.

Table 1 clearly suggests two obvious uses of the calculation scheme

presented here. First, as mentioned above, this scheme could be

useful for analytically (Sidey, 2010) determining the BV parameters

from the ‘reference structure/shell sets’ for which the BVS rule is

expected to be obeyed exactly (i.e. hBVSi = VA). Thus, exploring the

‘r0 versus b’ dependencies accurately calculated for the above sets by

using this scheme [every point of such dependencies exactly gives

hBVSi = VA for the respective set] can help find the common or

optimum solution (r0; b) of the highest possible accuracy.

Additionally, if the correct b value for a given ion pair is hard to

detect [e.g. if the ion pair demonstrates only one coordination

number], this parameter might be detected by comparison of the str0

and exr0 (or st
hBVSi and VA) values calculated for a statistically

representative set of coordination shells; the best possible value of

the b parameter must give the smallest difference |str0 �
exr0| (or

|st
hBVSi � VA|).

However, a researcher should always bear in mind that even in

very favourable cases the precision of the BV parameters is not

expected to be better than 0.001 Å for b and 0.0001 Å for r0.

Finally, it must be clearly stated that the calculation scheme

presented here is just a supplemental tool for determining the high-

performance BV parameters; as with any other related scheme, this

cannot replace crystal chemical knowledge of a researcher and,

therefore, should be used cautiously. Nevertheless, the author

believes that the above scheme can be useful for the BVM and should

be considered by a researcher if other calculation schemes suppo-

sedly fail.
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3 Being derived from the crystalline B2O3 polymorphs, these BV parameters
(taken with more realistic precision) can be considered as those corresponding
to ‘pure’ B—O bonds not influenced by the ‘third-party’ atoms; applicability of
these parameters will be discussed elsewhere.
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